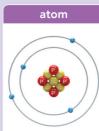
Design and Function How can technology make our lives easier?

Unit


Lesson Plan


Unit Opener & Lesson 1 How does technology mimic living things?			
	Activity	Pages	Time
Engage	 Unit Opener: Think! What do you think robots will be used for? Unit Opener: Review the first five steps in the design process. Unit Opener: Identify problems robots were invented to solve. Think! Is a seeing-eye dog a kind of prosthetic? Why or why not? Think! In what other ways do you think nanotechnology might be useful? 	SB p. 4 SB p. 4 SB p. 4 TB p. 6 SB p. 8	5 min 10 min 10 min 10 min 10 min
Explore	Digital Activity: Did You Know: Robotics (ActiveTeach)	TB p. 5	15 min
Explain	 How technology can mimic the human body and how prosthetic limbs work How machines or robots mimic animals and how nanotechnology works Got it? 60-Second Video (ActiveTeach) 	SB p. 5–6 SB p. 7–8 TB p. 8	60 min 60 min 10 min
Elaborate	 Flash Lab: Lists Science Notebook: Prosthetic Limbs Science Notebook: Written Report At Home Lab: Machines and Technology Science Notebook: Robots That Mimic Animals 	SB p. 5 TB p. 6 TB p. 6 SB p. 7 TB p. 7	10 min 30 min 25 min 25 min 30 min
Evaluate	 Lesson 1 Check (ActiveTeach) Assessment for Learning Review (Lesson 1) Got it? Self Assessment (ActiveTeach) Got it? Quiz (ActiveTeach) 	TB p. 15a TB p. 8 SB p. 15 TB p. 15b TB p. 15b	10 min 10 min 10 min 10 min 10 min

Lesson 2 What is the design process?			
	Activity	Pages	Time
Engage	 Think! Why are engineers important? Think! Are engineers scientists? Why or why not? Think! What might happen if you fail to document your design? 	TB p. 9 TB p. 10 SB p. 12	5 min 10 min 5 min
Explore	• Digital Lab: How can the design of a model arm help you learn about how your arm works? (ActiveTeach)	ТВ р. 9	20 min
Explain	 What the design process is How to design a prototype, communicate results, evaluate, and redesign How robotic arms developed Got it? 60-Second Video (ActiveTeach) 	SB p. 9–10 SB p. 11–12 SB p. 13 TB p. 13	60 min 60 min 30 min 10 min
Elaborate	 Science Notebook: Design a Process (1) Go Green: Everyday Solutions Science Notebook: Design a Process (2) Science Notebook: Flow Chart 	TB p. 10 TB p. 11 TB p. 12 TB p. 13	20 min 20 min 20 min 20 min
Evaluate	 Lesson 2 Check (ActiveTeach) Assessment for Learning Review (Lesson 2) Got it? Self Assessment (ActiveTeach) Got it? Quiz (ActiveTeach) 	TB p. 15a TB p. 13 SB p. 15 TB p. 15b TB p. 15b	10 min 10 min 10 min 10 min 10 min
Lab	 Let's Investigate! How can you make and redesign a model of a robotic arm? (ActiveTeach) 	SB p. 14	30 min

T2 Unit 1 • Unit Overview • Lesson Plan

Flash Cards

Lesson 1	
Key Words	ELL Support
sensor system, prosthetic limb, nanotechnology, atom, nanobot	Vocabulary: technology, mimic, muscular, skeletal, invention, research, prototype, robot, android, structure, engineer, dangerous, joint, behavior, wiggle, flap (v), cholesterol, artery, cell
Lesson 2	

prosthetic limb

design process, bristle, prototype, plaque, document, robotic

Key Words

ELL Support Vocabulary: construct, communicate, transport, engineer, toothbrush, handle, gums, grip, thumb holder, expensive, strong, flexible, bend, requirement, measurement, record, communicate, manager, salespeople, verify, labeled, diagram, graphic organizer, pick up, stack

nanotechnology

Unit Objectives

Lesson 1: Students will learn how some technology can mimic muscular and skeletal systems.

Lesson 2: Students will learn how to use the design process.

Vocabulary: technology, mimic, muscular, skeletal, invention, research, process, prototype, robot, android

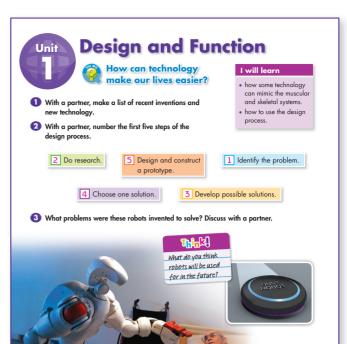
How can technology make our lives easier? Build Background

Explain that, as students read the unit, they will learn about technology and how it can help them. Ask students to say what technology makes their lives easier. (Possible answers: *GPS maps on cellular phones, computers at school, barcode machines at the supermarket,* etc.)

Engage

Think!

What do you think robots will be used for in the future?


Have students look closely at the photograph, paying special attention to the android robot. What is in the picture? A robot taking care of a patient. Read the Think! question aloud and encourage students to discuss any experiences they have had with robots. Invite volunteers to share their experiences watching robots work. Discuss how robots move and what useful tasks they can perform.

With a partner, make a list of recent inventions and new technology.

Pair students. Read the instructions and allow students time to brainstorm a list of recent inventions and new technology. Monitor and provide vocabulary support as necessary. Allow pairs to share their ideas with the class. Write some of the more original ideas on the board.

With a partner, number the first five steps of the design process.

Activate prior knowledge about the design process. What is a problem? What is a solution? Point to the steps and invite five volunteers to read them aloud. Discuss the meaning of new vocabulary by asking students to provide simple definitions of the words.

Have students work with the same partner from exercise 1 and number the steps in the correct order. Review the answers by reading the texts and asking students to call out the answers chorally.

ELL Reading Strategy Support

4 Unit 1

Encourage students to use a dictionary to look up the meanings of key words that they don't understand and that cannot be guessed from context. Have students look up definitions for the following words and copy them into their notebooks: *process, inventions, research, prototype.*

3 What problems were these robots invented to solve? Discuss with a partner.

Ask students to look at the pictures. Invite students to discuss with a partner what the robots do. (Possible answers: The first robot cleans the floor. The second robot is a nurse/doctor.) How do these robots solve problems/make our lives easier?

Think! Again!

Revisit the question What do you think robots will be used for in the future? Ask What things do you wish robots could do? Allow students to discuss freely. Write students' ideas on the board and ask the class to group the types of tasks they wish robots could perform.

How does technology mimic living things?

Objective: Learn how technology can mimic the human body.

Vocabulary: structure, engineer, technology, dangerous, robot, joint, sensor

Digital Resources: Flash Card (sensor system), Explore My Planet! Digital Activity

Unlock the Big Question

Write the following on the board: *I will learn how technology mimics living things*. Write *robotics* on the board. Brainstorm ideas about the word's meaning.

Think!

What are the advantages of robots?

Explain to students that technology can help people do many things, even speak. Ask students to share what they think some other advantages of robots are. Encourage students to speculate how robots can be useful in medicine.

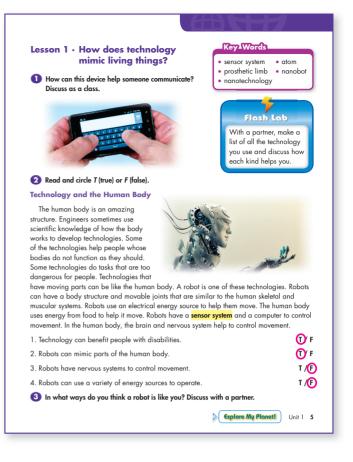
Explore

Explore My Planet! Did You Know: Robotics

Objective: Learn about the use of robotics in the medical field.

Digital Resources: Explore My Planet! Digital Activity, Explore My Planet! Activity Card (1 per student)

- Show the *Explore My Planet!* Ask students to do the activities. Make sure they understand what function robotics has in medicine.
- Have students complete the Activity Card.
- Afterward, hold a discussion: What is the definition of robotics? The study, design, construction, and use of robots. What does the catheter system in the Explore My Planet! do? It goes into areas of the heart that are hard for doctors to reach.


Explain

How can this device help someone communicate? Discuss as a class.

Point to the photograph and ask students to say what the device is and how it helps people communicate.

2 Read and circle T (true) or F (false).

Hold up the *sensor system* Flash Card to pre-teach the concept. Ask students to read the statements so they

know what information they are looking for. Invite students to read the text on their own and circle the answers. Check the answers as a class.

In what ways do you think a robot is like you? Discuss with a partner.

Write muscular system and skeletal system on the board. Ask students to look at the photograph of the robot and the text and say how robots are like humans. (Possible answers: They have moving parts and movable joints. The hand in the picture looks like a human hand. It looks like it can pick things up.)

Elaborate

🗲 Flash Lab

Lists

Read the instructions and invite students to work in pairs to make their lists and discuss.

Invite pairs to share their ideas with the class.

How does technology mimic living things?

Objective: Learn how prosthetic limbs work.

Vocabulary: prosthetic, limb, muscle, enable

Digital Resources: Flash Card (prosthetic limb), I Will Know... Digital Activity

Materials: pictures of prosthetic limbs

Build Background

Have students look up *prosthetic* and *limb* in the dictionary. Ask students to write the definitions in their notebooks. Encourage them to write a sentence with each of the two words to demonstrate they have understood their meanings.

Explain

4 How is the runner's prosthetic leg similar to the legs of the other runners? Discuss as a class.

Point to the photograph and ask students to discuss how the prosthetic leg is similar to the human legs. (Possible answers: It looks like the prosthetic leg has a knee. The man with the prosthetic leg can run.)

5 Read and, with a partner, discuss the questions below.

Hold up the *prosthetic limb* Flash Card to review the meaning. Ask students to work in pairs to read the first paragraph and underline the parts of the human body for which people might need a prosthetic limb (*arm, hand, leg, foot*).

Ask pairs to read the rest of the text and discuss the questions. Review the answers with the class.

ELL Reading Strategy Support

Ask students to summarize the main ideas of the text in their notebooks. Explain that they should only write the key ideas of the text. Tell them that writing summaries is a good way to make sure they have understood the most important content of a text.

6 What does this man's prosthetic hand enable him to do? Look and discuss with a partner.

Ask students to look at the picture and discuss what the prosthetic hand can enable the man to do.

Optional: Give students pictures of prosthetic limbs and have them draw the parts of the human body the limbs might replace.

4 How is the runner's prosthetic leg similar to the legs of the other runners? Discuss as a class

S Read and, with a partner, discuss the questions below. Prosthetic Limbs

Robotic technology can also be used to make a prosthetic limb move. A prosthetic limb is an artificial arm, hand, leg, or foot that replaces a missing one. Modern prosthetic limbs can be controlled by electrical signals from the brain. In the past, prosthetic hands had few fingers and could

In the past, prosthetic hands had few fingers and could not do many things. Today, they have a thumb and four fingers that are controlled individually. These prosthetic hands can turn a key, pick up small objects, and hold a glass.

Current prosthetic legs and feet allow their users to walk and even run. As technology advances, prosthetic legs and feet work more like real legs and feet. The latest prosthetic limbs also look more like real limbs.

 How do prosthetic limbs help people?
 How are prosthetic hands different today compared with those of the past?

6 What does this man's prosthetic hand enable him to da Look and discuss with a partner.

6 Unit 1 👂 🛛 Will Know...

Elaborate

Science Notebook: Prosthetic Limbs

Hold up the *prosthetic limb* Flash Card to review the meaning. Assign a part of the human body to groups of four students. Have students draw a potential prosthesis for that part of the body. Tell students to label the analogous parts of the body and the prosthesis (e.g., fingers, knuckles, etc.). Monitor students' work and provide support as needed. Ask groups to present their drawings to the class.

BOOK

Science Notebook: Written Report

Have students choose one type of prosthesis mentioned in this lesson and research how it has been improved over time. Have students write a short report on what they learned about their device.

Think!

Is a seeing-eye dog a kind of prosthetic? Why or why not?

Draw students' attention to the pictures on page 6 and then to the picture of the man with the dog on page 8. Ask the question and have students debate.

I Will Know...

Have students do the I Will Know... Digital Activity.

How does technology mimic living things?

Objective: Learn how machines and robots mimic animals.

Vocabulary: muscular, skeletal, mimic, behavior, wiggle, flap (v), fly (v), bat, squirrel, fish

Build Background

Remind students that they have been learning about robots and how they mimic living things. Ask students what robotic toys they have seen that imitate animals. Encourage students to describe the toys and what animal behaviors they mimic.

Explain

Read. With a partner, list the characteristics of each machine or robot that mimics the real animal.

Review the word *mimic* with the class by asking students to say what they have learned so far about robots mimicking human bodies. Explain that now they will read about how robots mimic animals. Ask students to scan the text and look for animal words and say them aloud. (Answers: *fish, bat, squirrel*)

Invite students to read the text in pairs and complete the information in the chart. Copy the chart on the board while they are working. Invite volunteers to write the answers on the board.

What can a robotic bat do that a person cannot? Go places where people cannot. How are airplane wings and tails similar to birds' wings and tails? They can be adjusted to control how the plane moves.

8 As a class, discuss how animal robots can be used.

Point to the pictures and invite two students to read the titles underneath. Invite students to describe how squirrels and fish move. Do you think a robot could move like a squirrel or fish? Yes! What could you do with the robotic fish? (Possible answers: You could make it swim with real fish. If it had a video camera, it could take pictures underwater.) Invite students to share their ideas about how other animal robots could be used.

ELL Content Support

Ask If you were a scientist studying snakes, how would you use a robot in your studies? (Possible answers: I would build a robot that looks and moves like a snake. I would put a camera on it. I would put my snake robot where real snakes live and observe them.)

Read. With a partner, list the characteristics of each machine or robot that mimics the real animal.


Animals and Technology

Some technologies mimic the muscular and skeletal systems of animals. These systems help animals to move in different ways. The wings and tails of birds help them fly. Fish hav muscular and skeletal systems that help them swim.

Airplanes have parts that mimic the wings and tails of birds. Like the wings and tails of birds, airplane wings and tails can be adjusted to control how the airplane moves. Some robots can also fly. The robotic bat flaps its wings and flies like a bat. It can search

collapsed buildings and other areas people cannot get to. Some robots that are used to explore the ocean have parts that mimic the muscular and skeletal systems of fish.

Scientists use robotic animals to study the behavior of real animals. A robotic squirrel makes noise and moves its tail like a real squirrel. It can be placed in an area where real squirrels live. A real squirrel may wiggle its tail and make noises at the robotic squirrel. Scientists can use this information to learn how squirrels communicate with one another.

Elaborate

Machines and Technology

Do this activity as a class and walk around near school with students or ask students to do the activity as homework. Remind students that technologies in the neighborhood may not seem like technologies. Tell students to pay attention to machines and think about what they are used for. Explain that each machine's use can provide clues as to how it might mimic the muscular or skeletal systems of humans and animals. Remind students to use plenty of descriptive words when they write their notes.

Science Notebook: Robots That Mimic Animals

Organize the class into five groups. Have each group search the Internet or books for information on one kind of robot that mimics the form and movements of animals. Encourage them to choose one of the following: robotic dog, bat, dragonfly, housefly, cockroach. Ask each group to find out who developed the robot, what it does, and its potential uses. Have each group make a poster or computer presentation about its robot and share it with the class.

How does technology mimic living things?

Objective: Learn about the uses of nanotechnology.

Vocabulary: tiny, nanotechnology, atom, nanobot, cholesterol, artery, cell

Digital Resources: Flash Cards (*nanotechnology*, *atom*, *nanobot*), *Lesson 1 Check* (print out 1 per student), Got it? 60-Second Video

Build Background

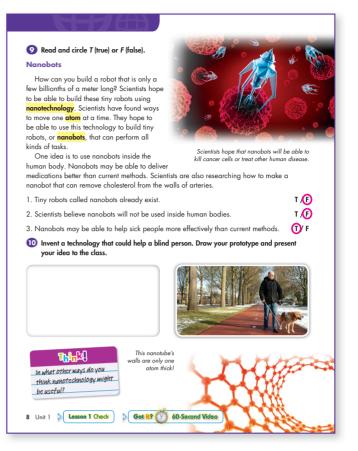
In order to present key concepts for this lesson, hold up the *nanotechnology*, *atom*, and *nanobot* Flash Cards. Review the meaning of *atom* (*the smallest component of an element*). Explain that *nano*- means *tiny* or *extremely small*. Discuss possible meanings of the two words on the Flash Cards with *nano*- in them. Write students' ideas on the board, but don't confirm whether they are right or wrong at this stage.

Explain

9 Read and circle T (true) or F (false).

Point to the text and ask students to identify the three highlighted words they discussed the meanings of at the beginning of the class. Ask them to look at the text quickly and check whether they guessed the meanings correctly by reading the words in context.

Ask students to look at the pictures relating to nanotechnology on the page and read the text individually before answering the questions. Review the answers with the whole class. Invite students to read sentences from the text that support the answers.


Ask further comprehension questions: How could nanobots be used inside the human body? To deliver medications or remove cholesterol from arteries. What skill allows scientists to build nanobots? Being able to move one atom at a time.

ELL Content Support

If students are having difficulty understanding the size of a nanobot, have them write a list of metric units of length from meter (1.0) to nanometer (0.000000001) vertically aligned to the decimal points.

Invent a technology that could help a blind person. Draw your prototype and present your idea to the class.

Pair students. Invite them to describe the picture. Ask them to discuss their ideas for technology to help a blind person and to draw the prototypes.

Elaborate

Think!

In what other ways do you think nanotechnology might be useful?

Read the question and invite students to discuss what nanotechnology may be good for. (Possible answers: *electronics, medicine, fuel,* etc.)

Evaluate

Lesson 1 Check Assessment for Learning

Distribute the Lesson 1 Check and guide students as they complete it. Check answers as a class. Then ask students to grade their progress on the topic of how technology mimics living things from 1 to 3: 3 = I understand how technology mimics living things; 2 = I need to study more; 1 = I need help! Encourage students giving themselves a 1 or a 2 to say what they found difficult and what they need to study more.

Got it? () 60-Second Video

Review the Key Words for Lesson 1 (see Student's Book page 5). Play the *Got it? 60-Second Vided* to review the lesson material.

Objective: Learn how people use the design process to develop technology.

Vocabulary: design, process, technology, construct, communicate, transport, engineer

Digital Resources: Flash Card (*design process*), *Let's Explore!* Digital Lab

Unlock the Big Question

Read the question and allow students to share their ideas. Hold up the *design process* Flash Card. Allow students to share their ideas about what the design process is.

Build Background

Ask students what technology they have learned about so far in this unit. Ask them what other technology they want to learn about. Explain that they will learn more about how technology is designed.

Why are engineers important?

Discuss with students different types of things engineers do and why they are important. (Possible answer: *They help develop new technologies.*)

Explore

Let's Explore! Lab How can the design of a model arm help you learn about how your arm works?

Objective: Learn how a model arm works in a similar way to your own.

Digital Resources: Let's Explore! Digital Lab, Let's Explore! Activity Card (1 per student) (Optional: Do the lab in class; refer to the Activity Card and Model Arm Pattern for materials and steps.)

- Show the Digital Lab.
- Have students complete the Activity Card. Check answers as a class.

Explain

Read and underline the word for a person who designs technology.

Point to the picture and ask students to say what job the man has and what they think he is designing. Allow them to share their ideas freely. Invite students

Lesson 2 · What is the design process? Key Words design process • plaque Read and underline the word for a person who bristle • docum designs technology. robotic prototype **Design Process** Technology helps to solve many of the problems we have Identify the problem. We use technology in our homes, schools, and offices. There are technologies for constructing buildings, communicating with others, transporting people and products, and so much more Who makes all this technology? People all over the world Do rese develop technologies. You may be surprised to know that even students your age develop new technologies. An <u>engineer</u> is a Develop possible solutions. person who designs new technologies. People work in many different fields to apply scientific knowledge to everyday life People use the **design process** to develop new technologies. The design process is a set of steps for developing products and processes that solve problems. Design and construct a prototype. lest the prototype nicate results Why do you think it is im the design process when designing n ogies? Discuss with a partner Look at the steps of the design process. In your notebook, write what you think each step involves. Let's Explore! Lab Unit 1 9

to read the text quickly in pairs and underline the word. Review the answer with the class. Discuss the meaning of *prototype* with the class (*original or first model of something*).

Ask students to read the text more slowly and in detail and to answer these questions: What is the design process? A set of steps for developing products and processes that solve problems. Why might engineers change the order of the steps? There might be trouble with one step or the usual order might not solve the problem.

2 Why do you think it is important to follow the design process when designing new technologies? Discuss with a partner.

Hold up the *design process* Flash Card again and review the meaning. Ask students to work in pairs and look at the design process flow chart next to the text and discuss why it is important to follow the process.

Optional: Demonstrate a process in the classroom. Point out the steps of the process. Have volunteers demonstrate a process of their own. (Refer back to the design of the model arm from the *Let's Explore!* Digital Lab as necessary.)

3 Look at the steps of the design process. In your notebook, write what you think each step involves.

Ask students to work in the same pairs and revisit the flowchart about the design process. Ask them to write ideas about what each step involves. Review the ideas with the whole class.

Objective: Learn more about the stages in the design process.

Vocabulary: toothbrush, handle, bristle, gum, grip, thumb holder

Digital Resources: Flash Card (*bristle*), *I Will Know...* Digital Activity

Materials: optional: students' toothbrushes

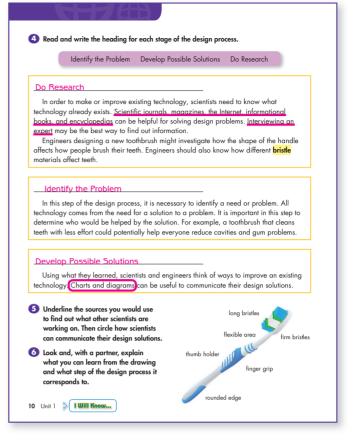
Build Background

Draw a toothbrush on the board and ask students to name it. Invite some students to describe their toothbrushes. (Possible answers: *soft, hard, big, small, traditional, electric,* etc.) If students have brought in their toothbrushes, allow them to show and describe them for the exercise.

Explain

4 Read and write the heading for each stage of the design process.

Point to the headings in the box and explain that students have to read the text and insert the headings. Allow students a few minutes to read the text and write the headings. Have volunteers read the three headings in order to check answers.


5 Underline the sources you would use to find out what other scientists are working on. Then circle how scientists can communicate their design solutions.

Ask students to underline the sentences in the text that show what sources scientists would use and circle the words that show how they communicate their design solutions. Hold up the *bristle* Flash Card and explain the meaning.

Have students read the text slowly and in detail to answer the following questions: What information might toothbrush designers research? The shape of the handle, how people brush their teeth, and different bristle materials. Where does technology come from? From the need for a solution to a problem.

6 Look and, with a partner, explain what you can learn from the drawing and what step of the design process it corresponds to.

Point to the picture of the toothbrush. Ask pairs to read the names of the different parts together. Allow them time to say which step of the process the drawing refers to and what they have learned from it about the shape of the handle, the way people brush their teeth, and the bristle materials.

ELL Reading Strategy Support

Explain to students that people have used tools for cleaning their teeth for thousands of years. For example, the ancient Babylonians used twigs as chewing sticks. Explain that the bristles on a modern toothbrush clean the teeth by rubbing particles off the surfaces of the teeth.

Elaborate

Science Notebook: Design a Process (1)

Have students write the steps of the design process from Student's Book page 10 in their Science Notebooks, leaving several lines of space between each step. Have small groups brainstorm a problem to solve with a new technology. Have them fill in the steps with the information relating to their problem.

Think!

Are engineers scientists? Why or why not?

Activiate prior knowledge about how scientists observe, hypothesize, and test. Then ask the question and hold a class discussion.

I Will Know...

Have students do the I Will Know... Digital Activity.

Objective: Learn details about the design process.

Vocabulary: solution, expensive, prototype, strong, flexible, bend, requirement, measurement

Digital Resources: Flash Cards (bristle, prototype, plaque)

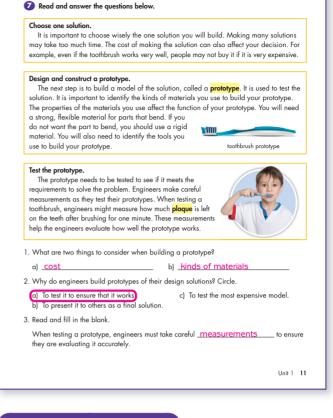
Build Background

Pair students and ask them to say what they remember about the design process from earlier in the lesson. Then ask them to open their Student's Book to page 9 and check how well they remembered the process.

Think!

Why do people need different types of toothbrushes? Ask students to say why different people need different types of toothbrushes. Ask them to describe the difference between their toothbrush and a grandparent's toothbrush.

Explain


7 Read and answer the questions below.

Hold up the *bristle* Flash Card and review the meaning. Then hold up the *prototype* and *plaque* Flash Cards to pre-teach or review the words. Ask students to read the text in pairs and answer the questions. Review the answers with the class.

Ask comprehension questions: Why is it important for engineers to choose just one solution? It would probably take too long and be too expensive to work on more than one. What is important in choosing materials for a prototype? The materials' properties. What other kinds of tests could engineers do on a toothbrush prototype? Have people use it to find out how long the bristles last. What are two properties that are important for the materials used in a toothbrush? The handle should be a material that doesn't bend too much. The bristles should be materials that will clean the teeth without scratching them or hurting the gums.

ELL Vocabulary Support

Have students refer back to their definition of the word *prototype*. Have volunteers read aloud their definitions. Then have students write two sentences using the word *prototype*.

ELL Content Support

Tell students that prototypes don't necessarily have to be complicated to be useful. Explain that some prototypes are simple. Say that there are also computer and mathematical models and that these are often used instead when the materials for a physical prototype are very expensive.

Elaborate

Everyday Solutions

Explain to students that a green activity is one that does not hurt the environment. Explain that, in daily life, people often leave the water running from the faucet while they brush their teeth. Ask students what technological solutions might solve this problem (Possible answer: *Place a sensor on the faucet that stops the flow of water if the toothbrush is not right under the water flow.*)

Pair students and have them plan a design for a solution for another activity from their daily lives that harms the environment. Allow pairs to share their designs with the class.

Objective: Learn about communicating results from tests of designs.

Vocabulary: document, record, communicate, manager, salespeople, verify, labeled, diagram, graphic organizer

Build Background

Write the word *results* on the board. Ask students to say how they think the results of tests relate to the design process and why they are important. Talk about what happens when results are good and what happens when they are bad.

Think!

What might happen if you fail to document your design? Make sure students understand the meaning of *document*

(to make a record of information). Ask students to think about what could happen if someone doesn't record their design. Encourage them to share their ideas.

Explain

8 Read and underline two reasons it is important to communicate your results to others. Then, in pairs, fill in the chart.

Point to the text and ask students to scan it to find the information that belongs in the chart. Have students complete the chart. Copy the chart on the board for six volunteers to write in the answers.

Then ask students to read the text on their own, but, this time, in detail. Ask further comprehension questions: What is documentation? A record of what you learn. Why is it important for scientists and engineers to communicate their solutions to others? Others will be able to understand the solution, repeat the tests, and verify the results.

ELL Reading Strategy Support

Tell students that we can sometimes understand more complicated texts better by first looking for the specific information we need before reading the whole text in more detail.

9 Read and look. Then, in pairs, make a list of three ways the redesigned prototype is better than the original.

Ask students to look at the picture and read the text before making their lists individually. Students compare their lists in pairs. Review the answers with the class.

To encourage students to analyze further, ask the following question: If a scientist or engineer evaluates the results of a design process and it does not solve the problem, what should she do next? She should begin to redesign the product or look at the earlier steps of the process to determine whether the process and/or product can be improved.

Elaborate

Science Notebook: Design a Process (2)

Have students look back at their ideas in their Science Notebooks about designing a process (see Teacher's Book page 10). Ask students to develop a presentation of their ideas. Remind students they can use communication tools such as graphic organizers, lists of materials, and labeled diagrams to show the steps of their design processes. Invite students to present their ideas to the class.

Objective: Learn about the development of robotic arms.

Vocabulary: robotic, pick up, stack

Digital Resources: Flash Card (robotic), Lesson 2 Check (print out 1 per student), Got it? 60-Second Video

Materials: construction paper (1 large sheet per group)

Build Background

Ask students to describe what they can see in the pictures on the page. Hold up the *robotic* Flash Card and discuss the meaning (*something that works like a robot*). Activate prior knowledge about human body parts and joints.

Explain

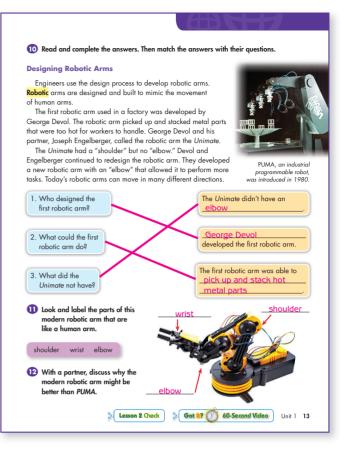
Read and complete the answers. Then match the answers with their questions.

Have students read the information on designing robotic arms and answer the questions that follow. Review the answers with the class.

Ask How does a robotic arm mimic a human arm? Rigid materials are like the skeletal system and form a structure for the robotic arm. Joints in the robot are like human joints, such as shoulders and elbows. Wires attached to the robotic arm move around like muscles.

Look and label the parts of this modern robotic arm that are like a human arm.

Point to the picture and ask students to label the parts on the robotic arm. Ask the class *What improvements would you make to the robotic arm in the picture?* (Possible answer: *Give it something more like a hand at the end of its arm.*)


With a partner, discuss why the modern robotic arm might be better than PUMA.

Point to the picture at the top of the page to remind students what PUMA is. Pair students and have them discuss why the modern arm might be better. Allow pairs to share their ideas with the class.

Elaborate

Science Notebook: Flow Chart

Ask students to work in small groups and make a flow chart on construction paper of the developments in robotic arms. Monitor groups while they work. Ask groups to

share their charts and ideas with the class. Allow students time to copy their flow charts in their notebooks.

ELL Content Support

Tell students that the first robotic arm in space was actually a crane originally intended to move equipment from NASA's space shuttle's cargo bay into space. But, thanks to zero gravity in space, the famous robotic arm can perform both heavy lifting and delicate maneuvers.

Evaluate

Lesson 2 Check Assessment for Learning

Distribute the Lesson 2 Check and guide students as they complete it. Check answers as a class. Then ask students to grade their progress on the topic of the design process from 1 to 3: 3 = I understand the design process; 2 = I need to study more; 1 = I need help! Encourage students giving themselves a 1 or 2 to describe what they found difficult and what they need to study more.

Got it?

60-Second Video

Review Key Words for Lesson 2 (see Student's Book page 9). Play the *Got it? 60-Second Vided* to review the lesson material.

Let's Investigate!

In this unit, students learn about the design process and how technology can mimic human and animal body parts. In this lab, students will make and improve upon the design of a model of a robotic arm.

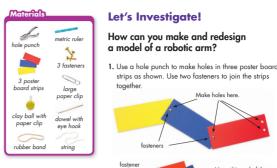
Let's Investigate! Lab How can you make and redesign a model of a robotic arm?

Objective: Students will observe and redesign a model of a robotic arm.

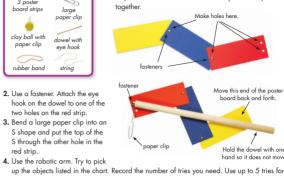
Materials: per group: hole punch, 3 poster board strips, clay ball with paper clip, rubber band, metric ruler, 3 fasteners, large paper clip, dowel with eye hook, string

Digital Resources: Let's Investigate! Digital Lab, Let's Investigate! Activity Card (1 per group)

Advance Preparation: Screw one eye hook into one end of each dowel.


- Divide the class into small groups and distribute materials.
- Have students follow the instructions to put together the robotic arm model.
- Ask students to try to pick up the objects listed in the chart and record the number of tries they need
- Ask students to compare their results with another group.
- Then have students plan how to redesign their models and follow their plan. Students then repeat step 4 and record their results.
- Have students compare their results with another group.
- Ask students to complete the Activity Card.

Teacher Time-Saving Option: Show the Let's Investigate! Digital Lab as an alternative to the hands-on lab activity.


Unlock the Big Question

Have students refer to the Big Question on the Unit Opener page. In pairs, have them recall what they have learned about technology. Have pairs complete Questions 6 and 7 on the Activity Card.

- 2. Use a fastener. Attach the ex hook on the dowel to one of the two holes on the red strip Bend a large paper clip into ar S shape and put the top of the
- S through the other hole in the red strip.

strips as shown. Use two fasteners to join the strips

ach obiect 5. Redesign your model of a robotic arm. Repeat step 4

Sample data

Objects Chart		
Object	Number of Tries	
Clay ball with paper clip	2	1
Paper clip	5	4
Rubber band	4	2
String	5	5

Class Project: Prosthesis

Divide the class into groups. Explain that they are going to design a prosthesis. Have groups brainstorm what kinds of prostheses for an animal or human they want to make. Students decide what their design should be like, what materials it should be made of, what tools they might need, and the steps they will need to make it. Groups should record the materials and steps. Students can draw individual pictures of their prostheses. Have groups share their ideas with the class. Students should explain what problem their prosthesis solves, how their prosthesis is meant to work, how they selected the materials it should be made of, and so on. Encourage creativity. Students may wish to make prosthetic noses, tails, or wings for people or animals, prosthetic fingers for animals, and so on.

Unit 1 Review

How can technology make our lives easier?

Digital Resources: Print out 1 of each per student: Got it? Self Assessment, Got it? Quiz

Evaluate

Strategies for Targeted Review

The following are strategies for providing targeted review for students if they encounter challenges with the content.

Lesson 1 How does technology mimic living things?

Question 1

If... students are having difficulty circling the correct answer, then... remind students about the definitions they found and sentences they wrote. Have students refer back to their definitions and sentences.

Question 2

If... students are having difficulty writing the correct answer, then... direct students to Lesson 1 to review what body systems the fish uses to swim.

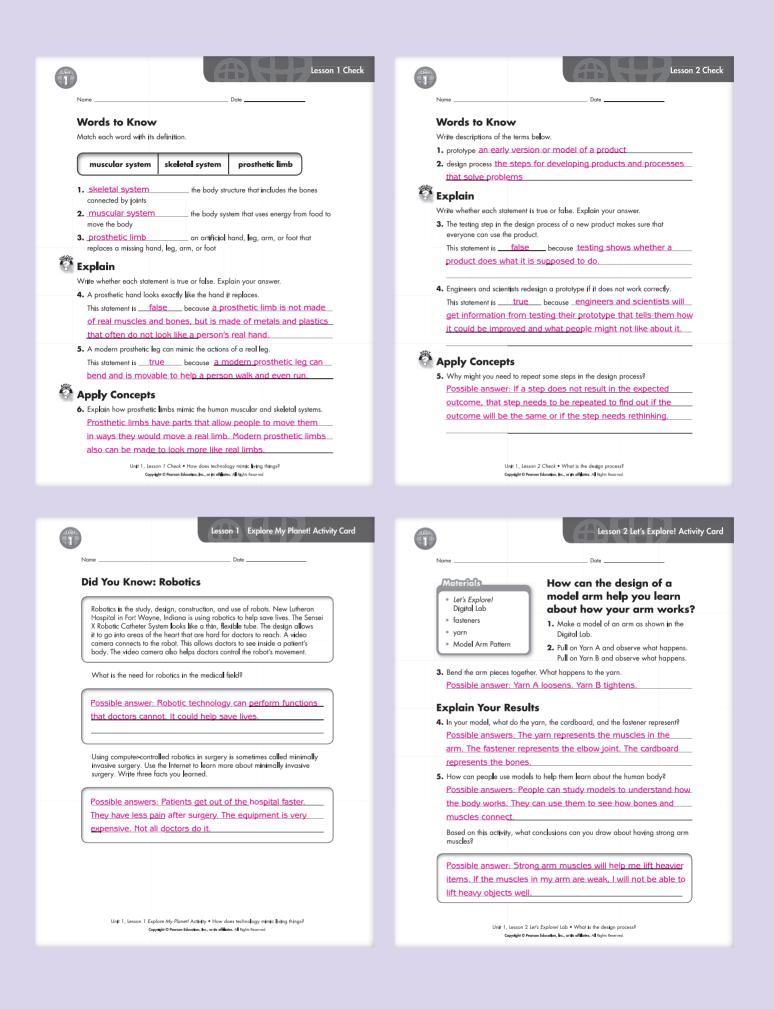
Lesson 2 What is the design process? Question 3

If... students are having difficulty answering what the goal of the design process is, then... discuss with students some examples of technology and the problems they solve.

Question 4

If... students are having difficulty answering what *document* means, then... direct students to page 12 to review the paragraph on communicating results.

ELL Language Support


Before students start working on the Review activities, have them read each question aloud along with you.

Got it? Self Assessment

Immediately after students have completed the Review activities, distribute a *Got it? Self Assessment* to each student. Have students complete the *Stop! Wait!* and *Go!* statements for each lesson, allowing them to look back through the lesson material if necessary.

Got it? Quiz

Distribute a Unit 1 *Got it? Quiz* to each student. Quizzes may be used for assessing students' understanding of unit concepts as well as for grading purposes.

T15a Unit 1 • Digital Resources and Photocopiables

Let's Investigate! Activity Card	Lessons 1 & 2 Got it? Self Assessment
Nome Date	Name Date
Let's Investigate!	Got it? Self Assessment
Analyze and Conclude	Complete the statements for each lesson.
6. What design change did you make to your model?	Lesson 1 How does technology mimic living things?
Possible answer: I changed the shape of the hook.	Stop! I need help with
7. Describe two ways in which the model is not like a real robotic arm?	Wait! I have a question about
Possible answers: It has only one function. It is not motorized.	
It is made of wood and poster board.	Go! Now I know
	Lesson 2 What is the design process?
	O Stop! I need help with
	Wait! I have a question about
	Go! Now know
Unit 1, Let's Investigate/Lab • Design and Function Copyright © Pearson Education, Inc., or its officiates. All Fights Reserved.	Unit 1, Got it? Self Assessment • Design and Function Copyright © Pearson Education, i.e., or is allighted. Al highs Reserved.
Got it? Quiz	Got it? Quiz
Name Date	Name Date
Got it? Quiz	5. What might nanobots be used for?
Circle the best answers.	A constructing buildings
1. Which of the following is the best description of the design process?	B working in the engine of a car C investigating squirrel behavior
A making new inventions	 Investigating square benavior killing cancer cells
 B building superhighways C designing nanobots 	6. An engineer watching people use a computer keyboard is doing which of the
 a set of steps for developing products and processes that solve problems 	following?
 In the design process, what is the next step after developing possible solutions? 	A making a model
A choose one solution	B identifying a problem
B identify the problem	C documenting a design D presenting design evidence
C do research	 Deserving design evidence 7. What are three kinds of reference materials that product designers use?
D test the prototype	Possible answers: scientific magazines, the Internet,
3. What TWO systems of the human body does a robotic arm mimic?	informational books, encyclopedias
A muscular system	8. Describe how a robotic squirrel might mimic a real one.
B respiratory system Skeletal system	Possible answers: A robotic squirrel might make noises and move
D digestive system	its tail like a real squirrel. It might walk or run like a real squirrel.
 In what ways are robots like humans? 	9. Describe three tasks that a prosthetic hand should be able to do.
A They are made of the same materials as humans.	Possible answer: A prosthetic hand should be able to move in
B They have emotions like humans.	different directions, close around an object and open again,
C They make movements like humans.	and pick up objects and put them down again.
D They have respiratory systems like humans.	10. Why do engineers evaluate a prototype?
	Possible answers: They do it to see how well the design solved the problem or to redesign the prototype to make it better.
Unit 1, Got <i>it? Quiz</i> • Design and Function Copyright O Promon Education, Junc, or its officiates. All Rights Reserved.	Unit 1, Got iPP Quize • Design and Function Cepyright © Pearson Education, Jac, or in difflates. All Rights Reserved.

Unit 1 Study Guide

How can technology make our lives easier?

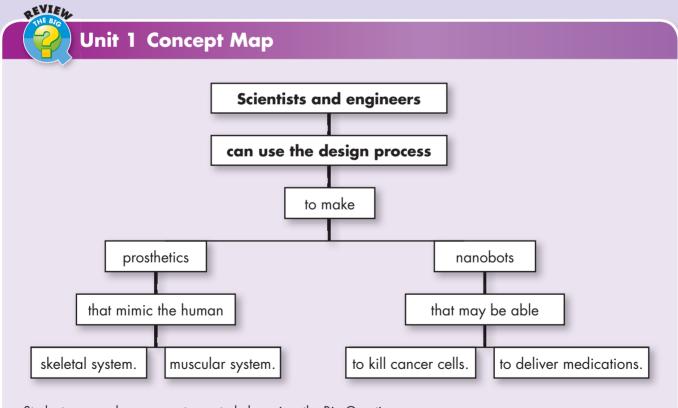
Lesson 1 How does technology mimic living things?

- Technology can mimic the muscular and skeletal systems of humans and animals.
- Prosthetic limbs mimic parts of the human body.
- Scientists hope to build tiny robots using nanotechnology.

Lesson 2 What is the design process?

- Engineers use the design process to solve problems.
- The design process has several steps.
- Designing, constructing, and testing a prototype are steps in the design process.
- Engineers record and share results.

Review the Big Question


How can technology make our lives easier?

Have students use what they have learned from the unit to answer the question in their own words.

How has your answer to the Big Question changed since the beginning of the unit? What are some things you learned that caused your answer to change?

Make a Concept Map

Have students make a concept map like the one shown on this page to help them organize key concepts.

Students can make a concept map to help review the Big Question.

T15c Unit 1 • Study Guide

Teac	her's	Notes
